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Accuracy and stability of a set of free-surface
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SUMMARY

An analysis is given for the accuracy and stability of some perturbation-based time-domain boundary
element models (BEMs) with B-spline basis functions, solving hydrodynamic free-surface problems,
including forward speed effects. The spatial convergence rate is found as a function of the order of the
B-spline basis. It is shown that for all the models examined the mixed implicit–explicit Euler time
integration scheme is correct to second order. Stability diagrams are found for models based on B-splines
of orders third through to sixth for two different time integration schemes. The stability analysis can be
regarded as an extension of the analysis by Vada and Nakos [Vada T, Nakos DE. Time marching
schemes for ship motion simulations. In Proceedings of the 8th International Workshop on Water Wa6es
and Floating Bodies, St. John’s, Newfoundland, Canada, 1993; 155–158] to include B-splines of orders
higher than three (piecewise quadratic polynomials) and to include finite water depth and a current at an
oblique angle to the model grid. Copyright © 2000 John Wiley & Sons, Ltd.

KEY WORDS: boundary element model; B-splines; higher-order basis functions; stability analysis; three-
dimensional; time-domain

1. INTRODUCTION

Boundary element models (BEMs) based on the boundary integral equation method (BIEM)
are used in a variety of fields, both in research and in engineering. This paper is devoted to
applications with hydrodynamics. Using a frequency domain formulation, a hydrodynamic
radiation–diffraction problem with free-surface water waves interacting with a fixed or
floating body can be simplified significantly, and thus frequency domain models have been
used extensively as tools in engineering to solve time-harmonic linear or weakly non-linear
problems. However, in recent years as computer power has increased, BEMs have gained
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popularity for time-domain simulations of the three-dimensional hydrodynamic problems
encountered in naval architecture and offshore engineering. Even today, though, the time-
domain simulation of fully non-linear three-dimensional hydrodynamic free-surface problems
tends to be very time consuming (see, e.g. Broeze [1], Celebi et al. [2] and Ferrant [3]) and thus
perturbation-based time-domain models are often used (see, e.g. Büchmann et al. [4] and Kim
et al. [5]). Consequently, there is a great interest in the understanding and prediction of the
accuracy and stability of perturbation-based time-domain BEMs. These predictions are often
vital for a successful development of a model. Thus, several authors have described analyses
regarding stability, damping and dispersion in the discrete solution obtained in their BEMs,
e.g. Bunnik and Hermans [6] and Sierevogel [7]. Even for fully non-linear models, linearized
stability analyses are performed (see, e.g. Dommermuth and Yue [8]), since the full system of
equations cannot be examined by analytical means. Consequently, the analysis of a linearized
model may yield valuable insight also into the behaviour of fully non-linear models.

In the Computer Aided Design (CAD) environment, B-splines are often used as a basis for
the computations. The use of B-splines presents a convenient way to define a basis of piecewise
polynomial functions. Thus, the functions described by B-splines are also piecewise polynomial
in nature. Among the attractive features of B-splines is a local support, i.e. that each basis
function is non-zero only in a small part of the computational domain. Also, spatial derivatives
can be obtained accurately through analytical differentiation of the basis functions. This last
property is especially advantageous when spatial derivatives on curved surfaces are needed,
such as when the pressure forces on a body are evaluated in a radiation–diffraction problem.
Today, B-splines or other polynomials are used as basis functions in BEMs, both in frequency
domain models (e.g. Harten and Efrony [9] and Maniar [10]), perturbation-based time-domain
models (e.g. Kring [11] and Nakos [12]) and in models for fully non-linear three-dimensional
calculations (e.g. Kim and Kim [13]). A stability analysis for a deep-water time-domain BEM
based on third-order B-splines was given by Vada and Nakos [14] using the assumption that
a current and the model grid are collinear, i.e. that a current does not intersect the model grid
at an oblique angle. More details of the calculations performed are given by Vada [15].
However, for problems involving bluff bodies and low speed of the body or a weak current,
the angle between the grid and the local underlying current may well be rather large. The
results given in the present work can be regarded as an extension of the work of Vada and
Nakos [14] to include higher-order B-splines, finite water depth and an arbitrary angle between
the underlying current and the model grid.

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

A three-dimensional irrotational flow in a homogeneous, incompressible and inviscid fluid is
considered. t denotes time and x= (x, y, z) is the position vector. Then a velocity potential
f(x, t) can be defined so that the velocity u in the three spatial dimensions can be written as

u=9f= (fx, fy, fz) (2.1)
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where 9 is the gradient operator and the subscripts x, y and z denote the spatial derivatives in
the respective directions. The co-ordinate system is chosen such that z=0 corresponds to the
still water level. The continuity equation combined with the condition of an irrotational flow
yields the well-known Laplace equation

92f=0 (2.2)

The Laplace equation is the governing differential equation in the fluid domain bounded by a
horizontal sea bed and a free surface (Figure 1). For the analysis presented in this work it is
assumed that the fluid extends to infinity in all horizontal directions.

For the free surface, two non-linear boundary conditions are given. The kinematic free-
surface boundary condition is

nt−fz+fxhx+fyhy=0, at z=n (2.3)

where h is the elevation of the free surface and the subscript t denotes the partial derivative in
time. The dynamic free-surface boundary condition is given by the Bernoulli equation

ft+gh+
1
2

�9f �2=0, at z=h (2.4)

where g is the acceleration due to gravity, and the pressure is assumed to be constant on the
free surface and thus can be omitted. The horizontal sea bed at the depth h is considered to
be impermeable, and thus the velocity component perpendicular to the sea bed is zero,

fz=0, at z= −h (2.5)

The kinematic and dynamic boundary conditions (2.3) and (2.4) can be linearized using Taylor
expansion and perturbation expansion techniques. The free-surface conditions for linear waves
riding on a uniform (zeroth-order) current, 9f (0)= (U, V, 0)=U, take the form

Figure 1. Definition of fluid domain and boundaries. Note that the problem set-up is in three spatial
dimensions, even though only two are shown here.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 125–155
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h t
(1)=fn

(1)−Uhx
(1)−Vhy

(1), at z=0 (2.6)

f t
(1)= −gh (1)−Ufx

(1)−Vfy
(1), at z=0 (2.7)

where the superscript (1) denotes a first-order quantity. Since no higher-order effects will be
discussed here, these superscripts are omitted in the remaining part of this work. Subscript n
denotes partial differentiation along a unit normal vector pointing outwards from the fluid
domain. On the linearized free surface fn=fz, however, the subscript n is preferred to
emphasize the connection with the boundary integral equation (see below). Earlier works, such
as Büchmann et al. [4], can be consulted for a more detailed description of the mathematical
background.

When Green’s second identity is used, the governing equation (2.2) in the linearized fluid
domain (−h5z50) is transformed into a boundary integral equation of the form

2pf(x)=
&&

G(j)

fn(j)G(x, j) dG−
&&

G(j)

f(j)Gn(x, j) dG (2.8)

where G denotes the boundary over which the integration is to be performed. In Equation (2.8)
j= (j1, j2, j3) is an integration point on the boundary of the domain and x= (x, y, z) is a field
point. In order to avoid integration over the sea bed, the Green’s function G is chosen as

G(x, j)=
1
r
+

1
r %

(2.9)

i.e. as a Rankine source and mirror terms, where

r=
(x−j1)2+ (y−j2)2+ (z−j3)2 (2.10a)

r %=
(x−j1)2+ (y−j2)2+ (z+j3+2h)2 (2.10b)

Thus, the integration in Equation (2.8) is performed only over the linearized free surface
(j3=0). This means that in (2.8), fn can be replaced by fz. Also, since all the field points will
be located on the free surface (z=0), the Green’s function can then be written as a function
of x−j=r= (r1, r2, 0)

G(x, j)=G(x−j)=G(r)=
1


r1
2+r2

2
+

1


r1
2+r2

2+4h2
, for z=j3=0 (2.11)

Generally, in a BEM some set of basis functions (or shape functions) is defined, such that the
unknowns at a given time step, rather than being the ‘physical’ parameters (f, fn, h) in the
problem, are the coefficients with which each of the basis functions contributes to the total
solution. Often a collocation approach is taken when defining a set of collocation points (or
‘nodes’) in which the boundary integral equation and the boundary conditions are satisfied. In
each time step of the model a mixed set of equations is solved, first by time integrating the
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boundary conditions, and subsequently by solving the boundary integral equations, typically a
large dense linear system, to obtain the remaining unknowns (see Bühmann et al. [4] for more
details).

3. B-SPLINE BASIS IN BEMs

One of the largest problems using BEMs is that in general the CPU time and memory
requirements needed to solve a problem increase rapidly with the number of unknowns in the
problem. Typically, the memory requirement will be around O(N2), where N is the number of
unknowns. Similarly, the CPU time requirement varies from O(N2) to O(N3) depending on
which method is used for solving the linear system (the boundary integral equations). Today
several different techniques can be used to accelerate BEMs. When piecewise constant basis
functions are chosen, it is possible to speed up the process significantly. If multipole or
pre-corrected FFT accelerated iterative techniques (see, e.g. Korsmeyer et al. [16] and Nabors
et al. [17]) are used, problems requiring in the order of 105 panels (and unknowns) can be
solved within a reasonable time. Alternatively, a significant speedup can be gained by using a
domain-decomposition approach (see, e.g. Harten and Efrony [9], de Haas [18] and Wang et
al. [19]). The last two of these domain-decomposition methods yield BEMs where fully
non-linear problems with the order of 103–104 unknowns have been solved.

While both the sparsification algorithms (multipole and pre-corrected FFT accelerated
iterative techniques) and the domain-decomposition technique aim at reducing the cost per
unknown in the model, the B-spline basis approach aims at improving the accuracy obtained
per unknown in the model. Obviously, when a piecewise constant set of basis functions is used,
a lot of unknowns are needed to resolve even a smooth function. Thus, better basis functions
are needed. Since the velocity potential is a rather smooth function in space (the gradient of
the potential is the local velocity), the potential may be approximated to a high accuracy by
using a piecewise polynomial basis. Thus, a set of basis functions where each basis function is
piecewise polynomial is constructed—the B-spline basis. It should be noted that B-splines and
non-uniform rational B-splines (NURBS) today are widely used in both CAD and computer
visualization for designing curves and surfaces [20]. Thus, it would be a great advantage for a
BEM if the program could interpret geometrical data in a B-spline format. Then, the complex
surfaces needed for the modelling could be generated by using an existing CAD tool, and the
need for tedious grid generation could be avoided. The choice to use B-splines also for the
basis functions in the BEM is then straightforward.

In his frequency domain BEM, Maniar [10] used a B-spline basis to get spatial convergence
rates increasing with the order of the B-spline basis. Also, it was noted by Maniar that to
obtain a 1.0–0.1 per cent accuracy, 10–60 times fewer unknowns are needed when using a
B-spline method than when using a constant panel method. For smaller relative errors it will
be even more advantageous to use a method based on B-splines.

The properties of B-splines can be found in textbooks (e.g. Schumaker [21]). In this work,
N (m)(x) will denote a normalized B-spline centred on x=0 and defined on a uniform grid with
mesh size Dx. The size of the support of N (m) (the domain on which the function is non-zero)
is then mDx. The shape of these B-splines on a uniform grid is shown in Figure 2.
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Figure 2. One-dimensional B-spline basis functions of orders one through six. The B-splines have been
normalized such that the integral value is kept constant.

When the convolution properties of the B-splines are used, it can be shown that the
continuous Fourier transform of the (normalized) B-spline, N (m)(x), is

N0 (m)(u)=
�sin(uDx/2)

uDx/2
�m

(3.1)

See Appendix A for the Fourier transform definitions and notations used in this work.
Similarly, by defining a two-dimensional basis function as a product of two B-splines

N (m)(x, y)=N (m)(x)N (m)(y) (3.2)

the continuous Fourier transform becomes

N0 (m)(u, 6)=
�sin(uDx/2)

uDx/2
�m�sin(6Dy/2)

6Dy/2
�m

(3.3)

4. THE LINEAR CONTINUOUS DISPERSION RELATION

A free surface of infinite extent over a finite water depth is considered. The linearized
equations for waves riding on a uniform (zeroth-order) current are Equations (2.6)–(2.8).
Taking the continuous Fourier transform in time (sub-tilde) and space of the two free-surface
boundary conditions (2.6) and (2.7) yields directly

i(v−Uu−Vu)h4̃ =f04 z (4.1)

i(v−Uu−V6)f04 = −gh̃4 (4.2)

Note that the Fourier transform definitions used here and in the following are defined in detail
in Appendix A. The variables u and 6 are respectively the x and y components of the
wavenumber vector, k= (u, 6). The wavenumber k is then found as k= �k �=
u2+62. v is
the cyclic frequency and i is the imaginary unit.
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For field and integration points both on the free surface, the Green’s function has the form
(2.11). In this case, taking the continuous Fourier transform in time and space of the boundary
integral equation (2.8) yields

2pf04 (u, 6 ; v)=
&�

−�

�&&�
−�

&&
G(j)

fz(j)G(x−j) exp(iux+ i6y) dG dx dy
n

exp(− ivt) dt

−
&�

−�

�&&�
−�

&&
G(j)

f(j)Gn(x−j) exp(iux+ i6y) dG dx dy
n

×exp(− ivt) dt

=
&�

−�

F0 [(fz�G)(x)] exp(− ivt) dt−
&�

−�

F0 [(f�Gn)(x)] exp(− ivt) dt

(4.3)

where the two-dimensional continuous convolution product operator � is defined in Ap-
pendix A. Using the Fourier transform of a continuous convolution product this equation is
reduced to

2pf04 (u, 6 ; v)=
&�

−�

f0 z(u, 6 ; t)G0 (u, 6) exp(− ivt) dt

−
&�

−�

f0 (u, 6 ; t)Gn
�

(u, 6) exp(− ivt) dt

=f04 z(u, 6 ; v)G0 (u, 6)−f04 (u, 6 ; v)Gn
�

(u, 6) (4.4)

Combining Equations (4.1), (4.2) and (4.4) and remembering that (u, 6)=k gives

[g(2p+Gn
�

)− (v−k ·U)2G0 ]f04 =0 (4.5)

yielding a continuous dispersion relation of the form

W(v, k, U)g
2p

G0
�

1+
G0 n

2p

�
− (v−k ·U)2=0 (4.6)

On the linearized free surface (z=0) the Fourier transforms of G(x) and Gn(x) are needed.
Note that on the free surface the Green’s function, (2.9)–(2.10) and its normal derivative can
be written as

G(x)=
1


x2+y2
+

1


x2+y2+4h2
, for z=0 (4.7a)
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Gn(x)=Gz(x)=
−2h

(x2+y2+4h2)3/2 , for z=0 (4.7b)

Through direct integration using, for example, the integration tables in Gradshteyn and
Ryzhik [22], it can be shown after some calculations, that the continuous Fourier transforms
(in space) of G(x) and Gn(x) are

G0 (u, 6)=
2p


u2+62
(1+exp(−2h
u2+62))=

2p

k
(1+exp(−2kh)) (4.8a)

Gn
�

(u, 6)= −2p exp(−2h
u2+62)= −2p exp(−2kh) (4.8b)

Inserting these into (4.6) yields

gk tanh kh− (v−k ·U)2=0 (4.9)

which is the well-known continuous dispersion relation for linear waves riding on a uniform
current in finite water depth.

5. THE DISCRETE DISPERSION RELATION

For the analysis made here, a free surface of infinite extent is considered, and thus an infinite
number of basis functions is used to describe the ‘physical’ parameters on the surface. Each
basis function is based on (normalized) B-splines, and a linear combination of all the basis
functions is used to describe each variable, i.e.

f(x, t)= %
�

j= −�
aj(t)Bj

(m)(x) (5.1a)

fz(x, t)= %
�

j= −�
bj(t)Bj

(m)(x) (5.1b)

h(x, t)= %
�

j= −�
cj(t)Bj

(m)(x) (5.1c)

As mentioned in Section 3, the superscript (m) denotes the order of the B-splines. A uniform
rectangular grid with grid spacings Dx and Dy is defined on the free surface. Similarly, a
temporal discretization with a constant time step size Dt is used. Due to the uniform
rectangular grid any basis function Bj

(m) can be related to one basis function at the origin (see
Figure 3) as

Bj
(m)(x)=N (m)(x−xj) (5.2)
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Figure 3. Translation of an arbitrary basis function Bj
(m)(x) to a basis function N (m)(x−xj) with centre

at the origin.

Since the coefficients (aj, bj, cj) of the basis functions may be regarded as discrete values of
some continuous ‘coefficient functions’ (e.g. aj(t)=a(xj, t)), the linear combinations in (5.1)
may be rewritten using discrete convolution products in space, e.g.

f(x, t)= %
�

j= −�
a(xj, t)N (m)(x−xj)=

(aj(t)+N (m))(x)
DxDy

(5.3)

where the two-dimensional discrete convolution product operator ‘ + ’ is defined in Appendix
A. The two-dimensional discrete Fourier transform is now found for the discrete convolution
product as

f. (u, 6 ; t)=
â(u, 6 ; t)N. (m)(u, 6)

DxDy
(5.4)

Alternatively, the discrete Fourier transform of a coefficient function can be written as

â=DxDy
f.

N. (m) (5.5)

Similar calculations may of course be carried out for fz, h and their respective coefficient
functions. Since spatial derivatives can be found by differentiating the basis functions like

fx(x, t)= %
�

j= −�
a(xj, t)Nx

(m)(x−xj)=
(a(t)+Nx

(m))(x)
DxDy

(5.6)
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the discrete Fourier transform of spatial derivatives can be found as

f. x=
âN. x

(m)

DxDy
=

N. x
(m)

N. (m) f. (5.7)

It should be noted that only B-splines of order m]3 have continuous first derivatives, as can
be seen in Figure 2. This means that the analysis carried out here should apply to m]3 only.

5.1. The boundary integral equation

The boundary integral equation (2.8) is considered for the field point and the source point
both on the linearized free surface (z=0). For the chosen discretization using B-splines, the
first integral in (2.8) may after some manipulations be expressed as

I1=
&&�

−�

� %
�

j= −�
bj(t)Bj

(m)(j)G(x−j)
n

dj=
b +(N (m)�G)

DxDy
(5.8a)

Similarly, the second integral in (2.8) can be brought to the form

I2
&&�

−�

� %
�

j= −�
aj(t)Bj

(m)(j)Gn(x−j)
n

dj=
a +(N (m)�Gn)

DxDy
(5.8b)

Thus, the discrete Fourier transform in space of the discretized boundary integral equation can
be written as

2pf. =F. [I1−I2]=
b. F. [N (m)�G ]

DxDy
−

âF. [N (m)�Gn ]
DxDy

(5.9)

This is rewritten introducing the discrete Fourier transforms of the coefficient functions, such
as (5.4)

1+S. 2

DxS. 1

f. (u, 6 ; t)=f. n(u, 6 ; t) (5.10)

with

S. 1
1

2pDx
F. [N (m)�G ]

N. (m) (5.11a)

S. 2
1

2p

F. [N (m)�Gn ]
N. (m) (5.11b)

Using the continuous Fourier transforms of G, Gn (4.8) and N (m) (3.3) as well as the aliasing
theorem (A.8), S. 1 and S. 2 are rewritten as
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S. 1(û, 6̂)=
%
�

k= −�
%
�

l= −�

(−1)m(k+ l)!1+exp
�

−4p
h

Dx
[(û+k)2+a2(6̂+ l)2]1/2�"

(û+k)m(6̂+ l)m[(û+k)2+a2(6̂+ l)2]1/2

2p %
�

k= −�
%
�

l= −�

(−1)m(k+ l)

(û+k)m(6̂+ l)m

(5.12a)

S. 2(û, 6̂)=
− %

�

k= −�
%
�

l= −�

(−1)m(k+ l)

(û+k)m(6̂+ l)m exp
�

−4p
h

Dx
[(û+k)2+a2(6̂+ l)2]1/2�

%
�

k= −�
%
�

l= −�

(−1)m(k+ l)

(û+k)m(6̂+ l)m

(5.12b)

where a=Dx/Dy is the panel aspect ratio, and the summation index k should not be confused
with the wavenumber k. The relative wavenumber (û, 6̂) is defined in Appendix A. It is obvious
that even though S. 1 and S. 2 are given as functions only of the relative wave number (û, 6̂), the
terms depend also on the order m of the B-spline basis, the panel aspect ratio a and the relative
water depth h/Dx. For quadratic basis functions (m=3) and deep water (Dx/h=0); this result
was also obtained by Kring [11] and Vada [15].

5.2. Free surface conditions

The linearized kinematic and dynamic free-surface boundary conditions (2.6) and (2.7) are
discretized using linear combinations of the basis functions (5.1) for the main variables. When
expressions like (5.7) are used for spatial derivatives of the basis functions, the discrete Fourier
transform in space yields

(ĥ

(t
= −

�
U

N. x
(m)

N. (m)+V
N. y

(m)

N. (m)

n
ĥ+f. n (5.13)

(f.
(t

= −
�

U
N. x

(m)

N. (m)+V
N. y

(m)

N. (m)

n
f. +gĥ (5.14)

Introducing D. (u)= iDxN. x
(m)/N. (m) gives

(ĥ

(t
= i

�
U

D. (u)
Dx

+V
D. (6)
Dy

n
ĥ+f. n (5.15)

(f.
(t

= i
�

U
D. (u)
Dx

+V
D. (6)
Dy

n
f. −gĥ (5.16)

where D. can be calculated as
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D. (û)=
2p %

�

k= −�

(−1)mk

(û+k)m−1

%
�

k= −�

(−1)mk

(û+k)m

(5.17)

which for m=3 corresponds to the results obtained by Kring [11] and Vada [15].
Time integration of the free-surface conditions ‘(y/(t= f(t)’ is often performed using linear

multi-step methods (K-step formulae) of the form

%
K

j=0

ajyn−K+ j=Dt %
K

j=0

bj f n−K+ j (5.18)

where y is the quantity to be integrated in time, and f represents the remaining terms in the
free-surface condition. This form includes well-known schemes like the Euler schemes, the
Adams–Bashforth and the Adams–Moulton schemes as well as the backward difference formula
(BDF) schemes. If bK=0, the scheme is explicit (a predictor method), and if bK"0, the scheme
is implicit (a corrector method) and a solution is then often found through an iteration process.
Connected to a linear multi-step method are the two characteristic polynomials

c(z)= %
K

j=0

ajz
j, x(z)= %

K

j=0

bjz
j (5.19)

A linear multi-step formula (5.18) can be considered as a discrete convolution product in time
(see Appendix A), and thus it can be shown that the z transform of a K-step formula sum is
(see, e.g. Vada [15])

F
�

� %
K

j=0

ajy
n−K+ jn=z−K � %

K

j=0

ajz
jn y
�

(5.20)

Here a sub-wedge denotes a z transform. When linear multi-step methods are used to time integrate
the linearized free-surface boundary conditions, the z transform of (5.15) and (5.16) can be found
as

c1(z)
Dt

ĥ
�

= i
�

U
D. (u)
Dx

+V
D. (6)
Dy

n
x1(z) ĥ

�
+x1(z)f. n�

(5.21)

c2(z)
Dt

f.
�

= i
�

U
D. (u)
Dx

+V
D. (6)
Dy

n
x2(z)f.

�
−gx2(z) ĥ

�
(5.22)

where the subscripts on c and x indicate that two different multi-step methods may be employed,
one for each free-surface condition. When multi-step schemes are chosen for a particular BEM,
it should be noted that the implicit methods often have better stability behaviour than similar
explicit methods. However, due to the fact that fn in the kinematic condition is obtained through
the boundary integral equations, which often are rather expensive to solve, an explicit scheme
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can then be chosen for this condition. In order to improve the overall stability, an implicit
scheme can be chosen to time integrate the dynamic condition. Such combinations of implicit
and explicit schemes have been used by, for example, Büchmann et al. [4] and Kim et al. [5].

5.3. The fully discretized dispersion relation

Combining the free-surface conditions (5.21) and (5.22) with the z transform of (5.10) yields

!
g
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DxS. 1(û, 6̂)

−
�

U
D. (û)
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+V
D. (6̂)
Dy
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� − i
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+
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x2(z)

�
+

1
(Dt)2
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x1(z)x2(z)

"
f.
�

=0 (5.23)

from which the discrete dispersion relation is obtained as

g
1+S. 2(û, 6̂)
DxS. 1(û, 6̂)

−
�
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D. (û)
Dx

+V
D. (6̂)
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D. (6̂)
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�c1(z)
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+
c2(z)
x2(z)

�
+

1
(Dt)2

c1(z)c2(z)
x1(z)x2(z)

=0 (5.24)

Each term in this discrete dispersion relation corresponds to the discretization of a term in the
continuous dispersion relation (4.9). For example, (1+S. 2)/(DxS. 1) is an approximation of
k tanh kh, and c1c2/(Dt2x1x2) is an approximation of −v2. Alternatively, the discrete
dispersion relation can be written in a non-dimensional form as

W. (z)=0 (5.25)

with

W. (z)=
�1+S. 2(û, 6̂)

S. 1(û, 6̂)
−Fh

2(D. (û)+gaD. (6̂))2nx1(z)x2(z)+b2c1(z)c2(z)

− iFhb(D. (û)+gaD. (6̂))(c1(z)x2(z)+c2(z)x1(z)) (5.26)

where the following dimensionless variables have been introduced:

Fh=
U


gDx
, b=


Dx/g
Dt

, a=
Dx
Dy

, g=
V
U

(5.27)

Fh is the grid Froude number, b is the grid number and a is the panel aspect ratio as previously
defined. Without loss of generality it may be assumed that the ‘current heading parameter’ g

has a finite value. The dimensional form of the dispersion relation (5.24) is preferred for
comparisons with the continuous dispersion relation (in calculations of convergence rates),
while the non-dimensional form (5.25) is convenient when determining stability properties.
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6. ACCURACY OF THE BEM

In order to determine the accuracy of the time-domain BEM, the discrete dispersion relation
(5.24) should be compared with its continuous counterpart (4.9). The comparison of the two
dispersion relations is straightforward when first rewriting the continuous dispersion relation
(4.9) as

gk tanh kh− (Uu+V6)2+ (Uu+V6)2v−v2=0 (6.1)

and then comparing (5.24) and (6.1) term by term. The correspondence of the various terms
in (5.24) and (6.1) can (for fixed a) be written as

− i
Dt

�c1(z)
x1(z)

+
c2(z)
x2(z)

�
=2v [1+O(Dtn1)] (6.2a)

1
(Dt)2

c1(z)c2(z)
x1(z)x2(z)

= −v2[1+O(Dtn2)] (6.2b)

D. (û)
Dx

=u [1+O(Dxnd)],
D. (6̂)
Dy

=6 [1+O(Dxnd)] (6.2c)

1+S. 2(û, 6̂)
DxS. 1(û, 6̂)

=k tanh (kh)[1+O(Dxns)] (6.2d)

where n1 and n2 depend on the choice of time integration scheme and give the temporal
convergence rate, while nd and ns depend on the order of the B-spline basis and give the spatial
convergence rate. In the following sections, the temporal convergence rates n1 and n2 and the
spatial convergence rates nd and ns will be found by using a Taylor expansion approach in time
or space for each of the above terms.

6.1. Temporal con6ergence rate

In general, the temporal convergence rate of the discrete dispersion relation can be found as
min(n1, n2). The right-hand sides of (6.2a) and (6.2b) can be Taylor-expanded in time about
vvDt=0 to find the order of the error terms. However, for more complicated multi-step
schemes this procedure is rather laborious, and therefore the convergence behaviour of the
rational expressions (c1/x1)+ (c2/x2) and c1c2/x1x2 are studied numerically.

It is straightforward to examine numerically the convergence rate of a function to a limit
known a priori. In this particular case, the error terms in (6.2a) and (6.2b) are isolated and
plotted on a log-scale as a function of v̂. When a particular scheme is examined, the
min(n1, n2) is important for the temporal convergence. Thus, it may be appropriate to examine
the (relative) error on each scheme using a definition as
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�E�= ) i
2v̂

�c1(z)
x1(z)

+
c2(z)
x2(z)

�
+1

)
+
) 1
v̂2

c1(z)c2(z)
x1(z)x2(z)

+1
)
=O(v̂n1)+O(v̂n2)=O(v̂min(n1,n2))

(6.3)

with z=exp ivDt=exp iv̂. It should be noted that �E� does not yield the actual error on a
particular scheme only the overall convergence behaviour.

The explicit Euler scheme has the characteristic polynomials

c(z)=z−1, x(z)=1 (6.4)

while for the implicit Euler scheme, the polynomials read

c(z)=z−1, x(z)=z (6.5)

Analytical Taylor expansions in time show that the fully explicit and the fully implicit Euler
schemes both are of the order n1=n2=1, each with �E�=3v̂/2+ · · · , while the mixed
implicit–explicit Euler scheme is of the order n1=n2=2 with �E�=v̂/4+ · · · . These results
are confirmed by plotting the numerically found values of �E� as a function of v̂ for each of
the three schemes (Figure 4). It is noted from the figure that the mixed Euler scheme is indeed
one order more accurate than each of the two pure Euler schemes. As a comparison, the rapid
temporal convergence of a mixed fourth-order implicit–explicit Adams (AM4–AB4) scheme is
also shown on the figure.

6.2. Spatial con6ergence rate

The spatial convergence rate of the time-domain BEM depends on the terms D. and (1+S. 2)/S. 1

in (6.2). The convergence behaviour of each of these terms will be studied in the following to
obtain results for nd and ns.

Figure 4. Error terms for the explicit (+ ), implicit (), and mixed (�) Euler schemes, and for the mixed
implicit–explicit fourth-order Adams scheme (× ). Shown are also the functions 3v̂/2 (—) and v̂2/4

(---).
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It is obvious from (5.17) that both the numerator and the denominator of D. have a
singularity at û=0. Thus, it is convenient for û"0 to rewrite (5.17) as

D. (û)=2pû
D. 1

D. 2

(6.6)

with

D. 1= ûm−1 %
�

k= −�

(−1)mk

(û+k)m−1 , D. 2(û)= ûm %
�

k= −�

(−1)mk

(û+k)m (6.7)

Then the convergence behaviour of the numerator and the denominator in (6.6) can be
examined for û�0. Following Nakos [12], the ‘singular parts’ (corresponding to the zero value
of the summation index k) of D. 1(û) and D. 2(û) can be extracted, and the remaining terms can
be Taylor-expanded around û=0 to yield

D. 1(û)=1+ ûm−1 %
k"0

(−1)mk

km−1

�
1−

m−1
k

û+O(û2)
n

(6.8a)

D. 2(û)=1+ ûm %
k"0

(−1)mk

km

�
1−

m
k

û+O(û2)
n

(6.8b)

The series above are absolutely convergent only for m]3. Note that, due to symmetry, the
first term in the square brackets of (6.8a) vanishes for even m. Similarly, the first term in the
square bracket of (6.8b) vanishes for odd m, but this has no significance since in this case D. 1

limits the accuracy. It follows that for a fixed value of u

D. (û)
Dx

=u
D. 1(û)
D. 2(û)

=
!u [1+O(Dxm−1)], m odd

u [1+O(Dxm)], m even
(6.9)

and thus

nd=
!m−1, m odd

m, m even
, m]3 (6.10)

The process to find the spatial convergence rate of (1+S. 2)/S. 1 is similar, albeit more laborious.
In this case, Taylor expansion in two dimensions (û, 6̂) is needed, and the expressions get more
complicated. First the fraction in (5.10) is rewritten as

1+S. 2(û, 6̂)
DxS. 1(û, 6̂)

=2p
F1(û, 6̂)−F2(û, 6̂)

F3(û, 6̂)
(6.11)

where the functions
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F1(û, 6̂)= ûm6̂m %
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(û+k)m(6̂+ l)m exp
�

−4p
h

Dx
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F3(û, 6̂)=Dxûm6̂m %
�
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%
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(−1)m(k+ l)!1+exp
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−4p
h

Dx
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(û+k)m(6̂+ l)m[(û+k)2+a2(6̂+ l)2]1/2

(6.12c)

have been introduced for convenience. In the asymptotic expansions for each of the above
functions, the double summations are divided into four distinct parts corresponding to relative
importance. The main part corresponds to the zero value of both summation indices, i.e.
k= l=0. The leading ‘error terms’ corresponds to k=0 with l"0 and to l=0 with k"0. The
remaining terms, where both summation indices are non-zero, are higher-order terms in the
asymptotic expansion. Thus, for example, F1 is rewritten as

F1(û, 6̂)=1+ ûm %
k"0

(−1)mk

(û+k)m+ 6̂m %
l"0

(−1)ml

(6̂+ l)m+ ûm6̂m %
k"0

%
l"0

(−1)m(k+ l)

(û+k)m(6̂+ l)m (6.13)

The leading ‘error terms’ are then Taylor-expanded to find the asymptotic behaviour for small
û, 6̂. Finally, the functions can, for fixed (u, 6), be written as

F1(û, 6̂)=
!1+O(Dxm+1), m odd

1+O(Dxm) m even
(6.14a)

F2(û, 6̂)=exp(−2h
u2+62)
�

1+exp
�Dx

h
�

O(Dxm)
n

(6.14b)

F3(û, 6̂)=
!(2p/
u2+62){1+exp(−2h
u2+62)}[1+O(Dxm+2)], m odd

(2p/
u2+62){1+exp(−2h
u2+62)}[1+O(Dxm+1)], m even
(6.14c)

It should be noted that F2 has an exponential convergence behaviour, so it is F1 that limits the
convergence of (1+S. 2)/S. 1. Combining (6.11) and (6.14) yields

1+S. 2(û, 6̂)
DxS. 1(û, 6̂)

=
!k tanh(kh)[1+O(Dxm+1)], m odd

k tanh(kh)[1+O(Dxm)], m even
(6.15)

where k=
u2+62 is not to be confused with the summation index k. Thus

ns=
!m+1, m odd

m, m even
, m]3 (6.16)
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The spatial convergence rates (6.10) and (6.16) can be verified numerically in the same manner
as the temporal convergence rates, i.e. by plotting the relative error terms against grid size on
a logarithmic scale. Expressions for the relative error terms are easily found by isolating the
order functions in (6.2). The relative error as a function of the mesh size is depicted in Figure
5 for one particular choice of panel aspect ratio, relative water depth, and angle of incidence
of the waves. The error terms have been found numerically for a number of the terms as
discussed above and the analytical convergence rates (6.10), (6.16) are confirmed. Even though
results are only given for orders three and four and for one particular case in this work,
calculations have also been carried out for the basis function of orders five through to nine, as
well as for different wave angles, water depths, and panel aspect ratios, and in these cases the
analytical results have been confirmed too.

In general, the spatial convergence rate of the discrete dispersion relation (5.24) is given by
min(nd, ns). Since, for all values of m, nd5ns it is nd that in general limits the spatial
convergence rate. However, in a zero current situation the terms connected with nd vanish, and
thus ns yields the spatial convergence rate.

7. STABILITY OF THE DISCRETE DISPERSION RELATION

It is noted from (5.25) that the discrete dispersion relation can be written as a polynomial in
z=exp ivDt. Thus, solving the discrete dispersion relation corresponds to finding the roots of
a complex polynomial in z. This can be done, for example, by finding the eigenvalues of the
companion matrix (see, e.g. Press et al. [23]). Numerically, the solution of the discrete
dispersion relation degenerates into solving an eigenvalue problem for a matrix, which can be
done by any well-documented linear algebra package, such as LAPACK [24]. Alternatively, for
low-order schemes, the roots of the polynomial can be found analytically.

For a fixed wavenumber vector (û, 6̂), each of the roots of W. (z) corresponds to a solution
where the temporal behaviour depends on the value of the root

Figure 5. Examples of error terms for the spatial convergence of D. /Dx (+ ), see (6.9), and (1+S. 2)/
(DxS. 1) (�), see (6.15), for fixed panel aspect ratio, a=1, relative water depth, h
u2+62=kh=1, and
a wave direction given by u/6=2. The errors are normalized by the analytically found limits and are

given for two different orders of the basis functions (m=3, 4).
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zj= �zj � exp ivjDt (7.1)

Here �zj � and vjDt represent respectively the modulus and argument of the complex number zj.
Any deviation of �zj � from unity represents damping (�zj �B1) or amplification (�zj �\1) of the
solution in time. If for some (û, 6̂) any of the roots have modulii greater than unity, then those
particular solutions will grow unbounded in time, and the scheme is denoted ‘unstable’. If for
all (û, 6̂) and for all choices of time step size all roots have modulii smaller than unity, then all
the corresponding solutions will decrease in time, and the scheme is denoted ‘strongly stable’.
Only if the maximum value of the modulii of the eigenvalues is exactly unity, will there exist
a solution that is periodic in time. A scheme with this property is denoted ‘neutrally stable’. If
the temporal and spatial discretization of the dispersion relation is ‘good’ (in some sense), then
two of the roots of W. (z) (5.25), called the ‘main roots’, should correspond closely to the two
solutions of v from the continuous dispersion relation (4.9). The remaining roots of W. (z) (if
any) are called spurious roots. Spurious roots will result in spurious (non-physical) waves in
the numerical model. Thus, the modulii of all the spurious roots should be kept as small as
possible in order to suppress the spurious solutions in the numerical model. On the other hand,
the modulii of the two main roots should be close to unity to conserve energy on the two main
frequencies. It should be noted that the Euler schemes discussed in the following have no
spurious roots.

Vada and Nakos [14] examined the stability properties of several different time stepping
schemes for use with their numerical model using a third-order B-spline basis and assuming
deep water (Dx/h=0) and a zero current angle with the grid (V=0). Vada [15] gives more
details with regard to how the actual stability diagrams are found, and shows also analytically
some of the properties of the simpler schemes. It was shown that for their model the purely
explicit Euler scheme is always unstable, while the purely implicit Euler scheme is strongly
stable. Their conclusions are also valid for basis functions of higher order (m]3), finite water
depths and currents intersecting the model grid obliquely (g"0). The mixed implicit–explicit
Euler scheme is neutrally stable if the time step size is small enough, i.e. if b]bc, where the
critical value of b depends on the grid Froude number, the panel aspect ratio, the water depth,
and the current heading as

bc(a, Fh, g, Dx/h)=max
û,6̂

!1
2
)1+S. 2(û, 6̂)

S. 1(û, 6̂)
−Fh(D. (û)+gaD. (6̂))

)' S. 1(û, 6̂)
1+S. 2(û, 6̂)

"
(7.2)

If bBbc, then an instability will occur for at least one particular wavenumber, and this will
of course make the scheme unstable. Even though the stability criterion for the mixed Euler
scheme can be written on the form (7.2), numerical evaluations of D. , S. 1 and S. 2 are needed in
order to obtain a value of bc. Thus, this represents a semi-analytical method for finding the
stability region for the mixed Euler scheme.

The stability of the scheme can also be examined by numerically calculating the roots of the
dispersion relation for a wide range of wave numbers (û, 6̂). The maximum modulus of the
eigenvalues (over all û and 6̂) is then determining the stability of a scheme for one particular
choice of spatial discretization, water depth, current and time step size. Thus, keeping the other
parameters fixed the stability can be found as a function of the time step size by plotting
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maxj,û,6̂ �zj � against b. As an example we consider the mixed Euler scheme in the deep water
case without current and for a=1, i.e. Dx=Dy, and use cubic B-splines (m=4) (Figure 6). It
is noted from the figure that exactly at b=bc predicted by (7.2), the largest modulus of the
roots drops to unity with machine precision accuracy. For b\bc both roots of the mixed
Euler scheme have modulus one.

The stability properties of the mixed Euler scheme for a range of different grid Froude
numbers are shown in the stability diagram in Figure 7. It is noted from the figure that for low
grid Froude numbers bc is fairly independent of both Fh and the order of the B-spline basis.
For larger current strengths bc increases and thus smaller time steps are needed to maintain a
stable scheme. For quadratic B-spline basis functions (m=3), it was noted by Vada [15] in the
stability analysis of the mixed implicit–explicit Euler scheme that the stability at low grid
Froude numbers, Fh, does not depend on the Froude number itself, and that the stability at
high grid Froude numbers does not depend on the panel aspect ratio, a. These observations
hold true also for higher orders of the basis functions. At small grid Froude numbers the
unstable wave numbers are located close to the corners of the principal wave number domain,
i.e. with both û and 6̂ close to 90.5. For increasing Fh a new kind of instability occurs at
relative wave numbers somewhat smaller than 0.5 and primarily in the direction of the current.
This second type of instability is responsible for the increase in bc with Fh observed in Figure
7.

The effect of the panel aspect ratio on the stability is shown in Figure 8. It is noted from the
figure that for small Fh an increasing aspect ratio results in a less stable scheme. This effect is
primarily due to the scaling of the axis, since both b and Fh are scaled by Dx. Thus, in Figure
8, increasing a can be regarded purely as decreasing Dy, and thus decreasing the overall panel
size. Then, it should not be surprising that this results in a less stable scheme, with instabilities
occurring at high wave numbers. Note that for high grid Froude numbers the stability does not
depend on the panel aspect ratio, a.

Figure 6. Maximum modulus of the roots of the mixed Euler schemes for varying b and fixed a=1,
Fh=0 and m=4 in deep water. Results from numerical solution of the dispersion relation (—) and the

(semi-analytical) critical value of b found by (7.2) is given (---).
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Figure 7. Stability diagram for the mixed implicit–explicit Euler scheme with a=1 and g=0 (corre-
sponding to V=0) in deep water. Results from numerical solution of the dispersion relation with
B-spline basis functions of order m=3 (+ ), 4 (× ), 5 (- +× -), and 6 (). Semi-analytical results using

(7.2) for B-spline basis functions of order m=3 (—), 4 (– – –), 5 (---) and 6 (· · ·).

Figure 8. Panel aspect ratio effects on the stability of the mixed Euler scheme for two different orders of
the B-spline basis (m=4 and m=6). Results are shown for three different aspect ratios: a=5.0 (—),
a=1.0 (– – –), and a=0.2 (---). All cases are assuming deep water with current heading parameter

g=0.

The effect of the water depth on the stability is very small except in very shallow water (say
when h/DxB1) (see Figure 9). The physical interpretation of this result is based on the
wavelengths on which the instabilities occur. Generally, the short waves (close to grid scale) are
harder to resolve and, as mentioned above, for unstable schemes it is often these short waves
that are exponentially growing in time. In general, these waves cannot ‘feel the bottom’, except
for, say, khBp (a typical deep water limit). For the short waves with wavelengths around 2Dx,
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Figure 9. Water depth effects on the stability of the mixed Euler scheme. Results are shown for three
different water depths: deep water (—), h/Dx=1.0 (– – –), and h/Dx=0.5 (---) and two different panel

aspect ratios (a=1 and a=5). All cases use g=0 and m=4.

the deep water limit obviously yields h/DxB1. It should be noted from Figure 9 that even in
very shallow water (say, h/Dx=0.5) only the stability at relatively large grid Froude numbers
is affected by the finite water depth. For low grid Froude numbers there are virtually no
stability effects from the finite water depth.

As can be seen from Figure 10, the current heading has a quite significant effect on the
stability of the scheme. In Figure 10, the abscissae have been scaled such that they represent
the (normalized) absolute values of the current rather than just the current in the x-direction.
Even though the effects of the current heading are hard to quantify in detail, it is evident that
turning the current to go ‘along’ the panels results in a more stable scheme. It is also noticed
that for small grid Froude numbers the stability is not affected by the current heading or the
absolute value of the current.

A stability diagram of the mixed implicit–explicit fourth-order Adams scheme is shown in
Figure 11. The instabilities observed in the AM4–AB4 scheme correspond to spurious roots in
the discrete dispersion relation. At zero speed, the instabilities appear primarily at û and 6̂ both
close to 90.5, but even at low grid Froude numbers the wave numbers of the instabilities shift
in the direction of the current away from the corners of the principal wave number regime.
Also, as can be seen from Figure 11, the critical value of b increases with the current strength
even for small Fh. As noticed by Vada and Nakos [14], the mixed implicit–explicit fourth-order
Adams scheme has significant damping of the main roots when b is close to the stability limit.
However, this property is not necessarily undesirable, since only the shorter waves are affected
by this dissipation. For the longer waves, the modulii of the main roots are very close to unity.

The effect of the panel aspect ratio on the stability of the mixed fourth-order Adams scheme
is shown in Figure 12 for one particular choice of basis functions, current heading and water
depth. It is noted that increasing the panel aspect ratio results in a less stable scheme as in the
case for the mixed Euler scheme. Also, the effect of the aspect ratio decreases with increasing
current strength, as the panel length in the current direction becomes the more important
parameter.
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Figure 10. Effect of angle between current and panels on the stability of the mixed Euler scheme for
m=4 in deep water. Results are shown for four different current headings: g=0.0 (—), g=0.5 (– – –),
g=1.0 (---) and g=2.0 (· · ·). For a=1 the curves for g=0.5 and g=0.2 are indistinguishable, and thus
only the first is actually plotted. Note that the curves for a=5.0 with g=0.5, 1.0 and 2.0 each matches
respectively the curves for a=0.2 with g=2.0, 1.0 and g=0.5 due to symmetry. The only difference on

each of these pairs of curves is the scaling of the axes.

Figure 11. Stability diagram for the mixed implicit–explicit fourth-order Adams scheme with a=1 and
g=0 (corresponding to V=0) in deep water. Results from numerical solution of the dispersion relation

with B-spline basis functions of order m=3 (+ ), 4 (– ×– –), 5 (- +× -), and 6 (····).
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Figure 12. Effects of panel aspect ratio on the stability of the mixed fourth-order Adams scheme using
a piecewise cubic B-spline basis (m=4). Results are shown for three different aspect ratios: a=5.0 (+ ),

a=1.0 (- ×– -) and a=0.2 (-�-). All cases are assuming deep water with g=0.

8. DISPERSION RELATION RESULTS AND EXAMPLES

As mentioned in the previous sections, the spatial convergence rate and the temporal
convergence rate are fully separated parameters. Thus, no matter how small the time step is,
there will be a finite error due to the spatial discretization. This error, of course, limits the
accuracy that can be obtained with the chosen scheme and spatial discretization. Note that this
limit is the same for all the multi-step time integration schemes considered. So, if the temporal
convergence of a particular scheme is to be examined, then it should be kept in mind that, for
example, the frequencies will converge to the limit yielded by the chosen spatial discretization
rather than to the ‘true’ solution yielded by the continuous dispersion relation.

When the non-dimensional parameters (5.27) and (A.2) are introduced, the continuous
dispersion relation (4.9) can be rewritten as

bvDt=2pFh(û+ag6̂)9
'

2p
û2+a26̂2 tanh
� h
Dx

2p
û2+a26̂2n (8.1)

As an example, consider the discrete dispersion relation with 6̂=0 and a=1 in deep water.
Figure 13A shows temporally converged results for bvDt for the discrete dispersion relation
for different orders of the B-spline basis. Also shown is the continuous result. Note that only
the upper branch of the dispersion relation is shown in the figure. It is noted that the discrete
results and continuous results agree well for small û—corresponding to longer waves.
Examining the difference more closely (Figure 13B) it is noted that for moderate values of û
the limiting error on the discrete dispersion relation is a strongly decreasing function of the
order of the B-spline basis. Thus, for say û=0.2, the limiting error on bvDt decays rapidly for
increasing m. For values of û close to the Nyquist frequency (û=90.5) all the discrete
schemes perform poorly, which is to be expected.

Introducing a current in a direction parallel to the panels the behaviour of the dispersion
relation is changed significantly as can be seen from Figure 14. Again only the upper branch
of the dispersion relation is shown. It is noted especially by comparing Figures 13B and 14B
that the errors on the discrete dispersion relation increase dramatically with the introduction
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Figure 13. Limiting dispersion relations (b��) for all multi-step time integration schemes in deep
water, without current and using (a=1) and (6̂=0). The plot (A) shows the continuous dispersion
relation (—) and the limiting discrete dispersion relation for m=3 (– – –), m=4 (---), m=5 (· · ·) and
m=6 (- · -). The plot (B) shows the errors on the discrete solutions compared to the continuous solution.

In the actual computations the mixed Euler scheme with b=104 has been used.

Figure 14. Limiting dispersion relations (b��) for all multi-step time integration schemes in deep water
with current (Fh=0.5), for a=1, g=0 and 6̂=0. The plot (A) shows the continuous dispersion relation
(—) and the limiting discrete dispersion relation for m=3 (– – –), m=4 (---), m=5 (· · ·) and m=6
(- · -). The plot (B) shows the errors on the discrete solutions compared with the continuous solution, i.e.
b(vDt)discrete−b(vDt)continuous. In the actual computations the mixed Euler scheme with b=104 has

been used.

of a current. A part of this error is caused by the fact that the discrete dispersion relation is
both continuous and periodic in û (and 6̂). Thus, for the discrete dispersion relation bvDt
must have the same value at û= −0.5 and û=0.5 (fixed 6̂). Since, in the continuous
dispersion relation, bvDt differs considerably at these two values of û, a significant error must
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be expected on the discrete dispersion relation as �û ��0.5, even for basis functions of very high
order.

It should be noted that in the case of no current ns (6.16) rather than nd (6.10) limits the
spatial convergence rates for û�0. This gives as a result that the schemes based on B-splines
of odd orders (e.g. m=3) have better convergence properties for Fh=0 than for Fh"0.
Obviously, this means that when a current is included, more nodes per wavelength will be
required to obtain a particular accuracy if a scheme based on B-splines of an odd order is used.
If high accuracy is needed (e.g. a relative error smaller than 0.1 per cent) the necessary number
of nodes per wave length increases from 7 to 19 using third-order (quadratic) basis functions
when the current increases from Fh=0 to Fh=0.5. Similarly, when fourth-order (cubic)
B-splines are used, the number of nodes per wavelength needed for this accuracy increases only
from around 6 to around 7. It should be noted that these conclusions are based on the data
shown in Figures 13 and 14 and could change somewhat by the inclusion of, for example, a
current under an oblique angle with the model grid. However, the numbers suggest that for
most applications a fourth-order B-spline basis should be sufficient to obtain good accuracy
with a modest number of unknowns.

For practical applications, the actual error on a particular scheme for a particular (finite)
time step size is more interesting than the (limiting) convergence behaviour. Thus, the discrete
dispersion relation should be examined for varying time step sizes in order to examine more
closely the error on each particular scheme. For a chosen scheme and discretization in time
and space (and a fixed current) the accuracy of the discrete dispersion relation can be found
for all wavenumbers and contours for, e.g. the relative error on bvDt can be found. Examples
of this application of the present analysis are shown in Figure 15. It is noted from the figure
that when the time step size is fairly large (corresponding to b=4 on the figure) the choice of
the time stepping scheme has a great impact on the accuracy of the solution, but for smaller
time step sizes (corresponding to b=16 on the figure) both schemes are nearly converged in
time, and the choice of scheme has little impact on the accuracy. Thus, if an ‘optimum’ scheme
and time step size is sought for a specific problem, then both accuracy and stability constraints
should be satisfied. Of course, in an actual application of a time-domain BEM it is not feasible
to examine this in detail. Rather, a ‘fairly stable’ scheme (such as the mixed Euler scheme)
should be chosen and then the time step size should be chosen sufficiently small to satisfy some
‘worst case’ conditions of stability and accuracy requirements.

9. CONCLUSIONS AND DISCUSSION

The accuracy and stability properties of a family of perturbation-based time-domain boundary
element models (BEMs) with B-spline basis functions have been examined. It has been shown
that the spatial convergence rate equals ns in a no-current case and nd when a current is
present, where nd and ns are defined by respectively by (6.10) and (6.16). In general, the
accuracy increases with increasing order of the B-spline basis functions.

Furthermore, BEMs based on odd basis functions have an advantage in no-current cases,
but a disadvantage when a current is present. This behaviour seems in general to favour
models based on B-splines of even order, especially if the order of the basis is hard-coded in
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Figure 15. Relative error on the frequency (bvDt) for the upper branch of the dispersion relation using
two different time integration schemes and two different time step sizes. In all the calculations m=4,
a=1, Fh=0 and deep water are used. Due to symmetry the error contours in the remaining three
quadrants of the principal wave number regime can be found by reflecting the given plots around the û

and 6̂ axis.

the BEM source code rather than controlled at runtime. In a particular example, the number
of nodes per wavelength needed to obtain a specified accuracy increases from 7 to 19 by the
introduction of a current when third-order B-splines basis functions are used. When fourth-
order B-splines are used, the corresponding increase is only from around 6 to around 7 nodes
per wavelength. For practical applications fourth-order B-splines (piecewise cubic polynomials)
should be sufficient to obtain good accuracy with a modest number of unknowns. It should be
noted that the conditioning of the linear system obtained in the BEM often becomes
considerably worse with increasing order of the B-spline basis [10]. This phenomenon and
methods to avoid the ill conditioning will be discussed in detail in future work. For the
temporal convergence it has been shown that the mixed implicit–explicit Euler scheme,
consisting of two first-order schemes each applied to integrate one of the free surface
conditions, is of second order in time. This fact has not been made clear in earlier work by e.g.
Kim et al. [5].

It has been shown that the number of time steps per period needed in order to maintain
stability of the BEM increases with the current strength and the order of the B-spline basis.
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Also the panel aspect ratio and the current heading are important parameters. However, when
the mixed Euler scheme is used on problems with weak currents, the number of time steps per
period needed depends on the panel aspect ratio, but not on the current strength, current
heading and the order of the basis functions. For quadratic basis functions and collinear
panels and current these results agree with the findings by Vada and Nakos [14].

Finite water depth effects are shown to be insignificant for the stability of these models,
except in extremely shallow water (i.e. when the water depth is smaller than a panel size).

In practical BEMs, non-uniform discretizations, truncation boundaries, and fixed or floating
bodies intersecting the free surface, are used. Even though the present stability analysis does
not take into account effects from such non-uniformities, they may be important for the
stability behaviour of BEMs. Büchmann and Skourup [25] showed that non-uniformities in the
spatial discretization may lead to instabilities, which do not vanish for Dt�0. Thus, the
stability criteria presented in this work may be considered as necessary, but not sufficient,
conditions for stability. A detailed study on the discrepancies between the stability analysis and
practical BEMs is in preparation, but is considered beyond the scope of the present work.
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APPENDIX A. FOURIER TRANSFORM DEFINITIONS AND THEOREMS

There are several ways to define the Fourier transforms of a function, so to avoid confusion,
the Fourier transform definitions used in this paper and the various theorems needed are
shortly stated in this appendix.

The continuous Fourier transform in space for a function f(x, y) is defined as

F0 [ f ]= f0 (u, 6)=
&&�

−�

f(x, y) exp(iux+ i6y) dx dy (A.1)

with i being the imaginary unit and F being chosen throughout as a symbol for a Fourier
transform operator. It is often advantageous to introduce dimensionless wavenumbers based
on the chosen discretization as

û=
uDx
2p

, 6̂=
6Dy
2p

(A.2)

with Dx and Dy being the spatial discretization used. Thus, e.g. û=0.5 corresponds to the
(spatial) Nyquist frequency in the x-direction. The principal wavenumber domain is then
defined by (û, 6̂)� [−0.5:0.5]× [−0.5:0.5]. In the discrete model any wavenumber outside this
regime will be aliazed into the principal wavenumber regime.
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The equivalent continuous Fourier transform in time is introduced as

F4 [ f ]= f
�

(v)=
&�

−�

f(t) exp(− ivt) dt (A.3)

such that the continuous Fourier transform in time and space can be evaluated as

F04 [ f ]= f
�

�
(u, 6 ; v)=

&&&�
−�

f(x, y ; t) exp(iux+ i6y− ivt) dx dy dt (A.4)

The discrete Fourier transform in space is introduced as

F. [ f ]= f. (u, 6)=DxDy %
�

k,l= −�
f(kDx, lDy) exp(iukDx+ i6lDy) (A.5)

Also, the discrete Fourier transform in time, the so-called z transform, is introduced as

F
�

[ f ]= f
�

(v)=Dt %
�

k= −�
f(kDt) exp(− ivkDt)=Dt %

�

k= −�
f(kDt)z−k (A.6)

with

z=exp(ivDt) (A.7)

There is a convenient relationship between continuous and discrete Fourier transforms known
as ‘The Aliasing Theorem’, stating that

f. (u, 6)=DxDy %
�

k= −�
%
�

l= −�
f0 �u+

2pk
Dx

, 6+
2pl
Dy

�
(A.8)

The two-dimensional continuous convolution product of two functions f and g is calculated as

h(x)= ( f�g)(x)=
&&�

−�

f(j)g(x−j) dj1 dj2 (A.9)

with x= (x, y) and j= (j1, j2). The (continuous) Fourier transform of such a convolution
product is easily calculated as

h0 (u, 6)= f0 (u, 6)g̃(u, 6) (A.10)

Similarly, a discrete convolution product in space (two-dimensional) can be defined as

h %(xi)= f +g(xi)=DxDy %
�

j= −�
f(xj)g(xi−xj) (A.11)
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with the discrete Fourier transform

h %. (u, 6)= f. (u, 6)ĝ(u, 6) (A.12)

Also, a discrete convolution product in time (one-dimensional) is defined as

h¦(ti)= f�g(ti)=Dt %
�

j= −�
f(tj)g(ti− tj) (A.13)

with the z transform

h¦
�

(u, 6)= f
�

(u, 6) g
�

(u, 6) (A.14)

Continuous Fourier transforms of derivatives are calculated as, e.g.

ft�
= iv f

�
, f0 x= − iuf0 , f0 y= − i6f0 (A.15)

where the subscripts denote partial derivatives.
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